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Convex learning algorithms, such as Support Vector Machines (SVMs), are of-
ten seen as highly desirable because they offer strong practical properties and are
amenable to theoretical analysis. However, in this work we show how nonconvex-
ity can provide scalability advantages over convexity. We show how concave-convex
programming can be applied to produce (i) faster SVMs where training errors are
no longer support vectors, and (ii) much faster Transductive SVMs.

1.1 Introduction

The machine learning renaissance in the 80s was fostered by multilayer models.
They were non-convex and surprisingly efficient. Convexity rose in the 90s with the
growing importance of mathematical analysis, and the successes of convex models
such as SVMs (Vapnik, 1995). These methods are popular because they span two
worlds: the world of applications (they have good empirical performance, ease-of-
use and computational efficiency) and the world of theory (they can be analysed
and bounds can be produced). Convexity is largely responsible for these factors.

Many researchers have suspected that convex models do not cover all the ground
previously addressed with non-convex models. In the case of pattern recognition,
one argument was that the misclassification rate is poorly approximated by convex
losses such as the SVM Hinge Loss or the Boosting exponential loss (Freund and
Schapire, 1996). Various authors proposed non-convex alternatives (Mason et al.,
2000; Perez-Cruz et al., 2002; Elisseeff, 2000), sometimes using the same concave-
convex programming methods as this chapter (Krause and Singer, 2004; Liu et al.,
2005).

The ψ-learning paper (Shen et al., 2003) stands out because it proposes a
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theoretical result indicating that non-convex loss functions yield fast convergence
rates to the Bayes limit. This result depends on a specific assumption about the
probability distribution of the examples. Such an assumption is necessary because
there are no probability independent bounds on the rate of convergence to Bayes
(Devroye et al., 1996). However, under substantially similar assumptions, it has
recently been shown that SVMs achieve comparable convergence rates using the
convex Hinge Loss (Steinwart and Scovel, 2005). In short, the theoretical accuracy
advantage of non-convex losses no longer looks certain.

On real-life datasets, these previous works only report modest accuracy improve-
ments comparable to those reported here. None mention the potential computa-
tional advantages of non-convex optimization, simply because everyone assumes
that convex optimization is easier. On the contrary, most authors warn the reader
about the potentially high cost of non-convex optimization.

This chapter proposes two examples where the optimization of a non-convex loss
functions brings considerable computational benefits over the convex alternative1.

Both examples leverage a modern concave-convex programming method (Le Thi,
1994). Section 1.2 shows how the ConCave Convex Procedure (CCCP) (Yuille
and Rangarajan, 2002) solves a sequence of convex problems and has no difficult
parameters to tune. Section 1.3 proposes an SVM where training errors are no
longer support vectors. The increased sparsity leads to better scaling properties
for SVMs. Section 1.5 describes what we believe is the best known method for
implementing Transductive SVMs with a quadratic empirical complexity. This is
in stark constrast to convex versions whose complexity grows with degree four or
more.

1.2 The Concave-Convex Procedure

Minimizing a non-convex cost function is usually difficult. Gradient descent tech-
niques, such as conjugate gradient descent or stochastic gradient descent, often
involve delicate hyper-parameters (Le Cun et al., 1998). In contrast, convex opti-
mization seems much more straight-forward. For instance, the SMO (Platt, 1999)
algorithm locates the SVM solution efficiently and reliably.

We propose instead to optimize non-convex problems using the “Concave-Convex
Procedure” (CCCP) (Yuille and Rangarajan, 2002). The CCCP procedure is closely
related to the “Difference of Convex” (DC) methods that have been developed
by the optimization community during the last two decades (Le Thi, 1994). Such
techniques have already been applied for dealing with missing values in SVMs
(Smola et al., 2005), for improving boosting algorithms (Krause and Singer, 2004),
and for implementing ψ-learning (Shen et al., 2003; Liu et al., 2005).

1. Conversely, Bengio et al. (2006) proposes a convex formulation of multilayer networks
which has considerably higher computational costs.
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Assume that a cost function J(θ) can be rewritten as the sum of a convex
part Jvex(θ) and a concave part Jcav(θ). Each iteration of the CCCP procedure
(Algorithm 1.1) approximates the concave part by its tangent and minimizes the
resulting convex function.

Algorithm 1.1 : The Concave-Convex Procedure (CCCP)

Initialize θ0 with a best guess.
repeat

θt+1 = arg min
θ

�
Jvex(θ) + J ′

cav(θt) · θ
�

(1.1)

until convergence of θt

One can easily see that the cost J(θt) decreases after each iteration by summing
two inequalities resulting from (1.1) and from the concavity of Jcav(θ).

Jvex(θt+1) + J ′
cav(θt) · θt+1 ≤ Jvex(θt) + J ′

cav(θt) · θt (1.2)

Jcav(θt+1) ≤ Jcav(θt) + J ′cav(θt) ·
(
θt+1 − θt

)
(1.3)

The convergence of CCCP has been shown by Yuille and Rangarajan (2002)
by refining this argument. The authors also showed that the CCCP procedure
remains valid if θ is required to satisfy some linear constraints. Note that no
additional hyper-parameters are needed by CCCP. Furthermore, each update (1.1)
is a convex minimization problem and can be solved using classical and efficient
convex algorithms.

1.3 Non-Convex SVMs

This section describes the ”curse of dual variables”, that the number of support
vectors increases in classical SVMs linearly with the number of training examples.
The curse can be exorcised by replacing the classical Hinge Loss by a non-convex
loss function, the Ramp Loss. The optimization of the new dual problem can be
solved using CCCP.

1.3.1 Notation

In this section we consider two-class classification problems. We are given a training
set (xi, yi)i=1...L with (xi, yi) ∈ Rn×{−1, 1}. SVMs have a decision function fθ(.) of
the form fθ(x) = w·Φ(x)+b, where θ = (w, b) are the parameters of the model, and
Φ(·) is the chosen feature map, often implicitly defined by a Mercer kernel (Vapnik,
1995). We also write the Hinge Loss Hs(z) = max(0, s − z) (Figure 1.1, center)
where the subscript s indicates the position of the Hinge point.
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1.3.2 SVM Formulation

The standard SVM criterion relies on the convex Hinge Loss to penalize examples
classified with an insufficient margin:

θ 7→ 1
2
‖w‖2 + C

L∑
i=1

H1(yi fθ(xi)) . (1.4)

The solution w is a sparse linear combination of the training examples Φ(xi), called
support vectors (SVs). Recent results (Steinwart, 2003) show that the number of
SVs k scales linearly with the number of examples. More specifically

k/L→ 2 BΦ (1.5)

where BΦ is the best possible error achievable linearly in the chosen feature space
Φ(·). Since the SVM training and recognition times grow quickly with the number
of SVs, it appears obvious that SVMs cannot deal with very large datasets. In the
following we show how changing the cost function in SVMs cures the problem and
leads to a non-convex problem solvable by CCCP.
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Figure 1.1 The Ramp Loss function Rs(t) = min(1 − s, max(0, 1 − t)) =
H1(t) − Hs(t) (left) can be decomposed into the sum of the convex Hinge
Loss (center) and a concave loss (right), where Hs(t) = max(0, s − t). The
parameter s controls the cutoff point of the usual Hinge loss.

1.3.3 Losses for SVMs

The SV scaling property (1.5) is not surprising because all misclassified training
examples become SVs. This is in fact a property of the Hinge Loss function. Assume
for simplicity that the Hinge Loss is made differentiable with a smooth approxima-
tion on a small interval z ∈ [1− ε, 1 + ε] near the hinge point. Differentiating (1.4)
shows that the minimum w must satisfy

w = −C
L∑

i=1

yiH
′
1(yi) fθ(xi)) Φ(xi) . (1.6)
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Examples located in the flat area (z > 1 + ε) cannot become SVs because H ′
1(z)

is 0. Similarly, all examples located in the SVM margin (z < 1− ε) or simply
misclassified (z < 0) become SVs because the derivative H ′

1(z) is 1.
We propose to avoid converting some of these examples into SVs by making

the loss function flat for scores z smaller than a predefined value s < 1. We thus
introduce the Ramp Loss (Figure 1.1):

Rs(z) = H1(z)−Hs(z) (1.7)

Replacing H1 by Rs in (1.6) guarantees that examples with score z < s do not
become SVs.

Rigorous proofs can be written without assuming that the loss function is
differentiable. Similar to SVMs, we write (1.4) as a constrained minimization
problem with slack variables and consider the Karush-Kuhn-Tucker conditions.
Although the resulting problem is non-convex, these conditions remain necessary
(but not sufficient) optimality conditions (Ciarlet, 1990). We omit this easy but
tedious derivation.

This sparsity argument provides a new motivation for using a non-convex loss
function. Unlike previous works (see Introduction), our setup is designed to test
and exploit this new motivation.

1.3.4 CCCP for Non-Convex SVMs

Decomposing (1.7) makes Ramp Loss SVMs amenable to CCCP optimization. The
new cost Js(θ) then reads:

Js(θ) =
1
2
‖w‖2 + C

L∑
i=1

Rs(yi fθ(xi)) (1.8)

=
1
2
‖w‖2 + C

L∑
i=1

H1(yi fθ(xi))︸ ︷︷ ︸
Js

vex(θ)

−C
L∑

i=1

Hs(yi fθ(xi))︸ ︷︷ ︸
Js

cav(θ)

For simplification purposes, we introduce the notation

βi = yi
∂Js

cav(θ)
∂fθ(xi)

=

{
C if yi fθ(xi) < s

0 otherwise

The convex optimization problem (1.1) that constitutes the core of the CCCP algo-
rithm is easily reformulated into dual variables using the standard SVM technique.
This yields the following algorithm2.

2. Note that Rs(z) is non-differentiable at z = s. It can be shown that the CCCP remains
valid when using any super-derivative of the concave function. Alternatively, function
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Algorithm 1.2 : CCCP for Ramp Loss SVMs

Initialize θ0 = (w0, b0) and β0 as described in the text.
repeat

• Solve the following convex problem ( with Kij = Φ(xi) · Φ(xj) ) and get αt+1

max
α

�
α · y − 1

2
αT K α

�
subject to

(
α · 1 = 0

−βt
i ≤ yi αi ≤ C − βt

i ∀1 ≤ i ≤ L
(1.9)

• Compute bt+1 using fθt+1(xi) =

LX
j=0

αt+1
j Kij + bt+1 and

∀i ≤ L : 0 < yi αi < C =⇒ yi fθt+1(xi) = 1

• Compute βt+1
i =

(
C if yi fθt+1(xi) < s

0 otherwise

until βt+1 = βt

Convergence in finite number of iterations is guaranteed because variable β can
only take a finite number of distinct values, because J(θt) is decreasing, and because
inequality (1.3) is strict unless β remains unchanged.

1.3.5 Complexity

Although SVM training has a worst case complexity of O(L3) it typically scales
quadratically (see Joachims, 1999a; Platt, 1999). Setting the initial β0 to zero
in Algorithm 1.2 makes the first convex optimization identical to the Hinge Loss
SVM optimization. Although useless support vectors are eliminated during the
following iterations, the whole optimization process remains quadratic, assuming a
constant number of iterations (see Figure 1.3).

Interestingly, we can easily give a lower bound on the SVM training complexity:
simply verifying that a vector α is a solution of the SVM quadratic problem involves
computing the gradients of (1.9) with respect to α and checking the Karush-Kuhn-
Tucker optimality conditions (Vapnik, 1995). With L examples and S support
vectors, this requires a number of operations proportional to L S. With convex
SVMs the number of support vectors S tends to increase linearly with L, as shown
in theory in Section 1.3.2 and in practice in Section 1.4.1, Figure 1.2: it is thus not
surprising that convex SVMs are at least quadratic with respect to the number of
training examples L.

We can reduce the number of support vectors S even in the first iteration
of Algorithm 1.2 by simply choosing a better initial β0. We propose to initialize

Rs(z) could be made smooth in a small interval [s− ε, s + ε] as in our previous argument.
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β0 according to the output fθ0(x) of a Hinge Loss SVM trained on a subset of
examples.

β0
i =

{
C if yi fθ0(xi) < s

0 otherwise

The successive convex optimizations are much faster because their solutions have
roughly the same number of SVs as the final solution (see Figure 1.2). We show
in the experimental Section 1.4.2 that this procedure is robust in practice, and its
overall training time can be significantly smaller than the standard SVM training
time.

1.3.6 Previous Work

The excessive number of SVs in SVMs has long been recognized as one of the main
flaws of this otherwise elegant algorithm. Many methods to reduce the number
of SVs are after-training methods that only improve efficiency during the test
phase (see §18, Schölkopf and Smola, 2002).

Both Elisseeff (2000) and Perez-Cruz et al. (2002) proposed a sigmoid loss
for SVMs. Their motivation was to approximate the 0− 1 Loss and they were
not concerned with speed. Similarly, motivated by the theoretical promises of ψ-
learning, Liu et al. (2005) proposes a special case of Algorithm 1.2 with s = 0
as the Ramp Loss parameter, and β0 = 0 as the algorithm initialization. In the
experiment section, we show that our algorithm provides sparse solutions, thanks
to the s parameter, and accelerated training times, thanks to a better choice of the
β0 initialization.

More recently Xu et al. (2006) proposed a variant of SVMs where the Hinge Loss
is also replaced by a non-convex loss. Unfortunately the resulting cost function is
minimized after “convexification” of the problem yielding to an extremely time-
consuming semi-definite minimization problem.

1.4 Experiments with Non-Convex SVMs

The experiments in this section use a modified version of SVMTorch,3 coded in C.
Unless otherwise mentioned, the hyper-parameters of all the models were chosen
using a cross-validation technique, for best generalization performance. All results
were averaged on 10 train-test splits.

3. Experiments can be reproduced using the source code available at http://www.kyb.

tuebingen.mpg.de/bs/people/fabee/transduction.html.
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Table 1.1 Comparison of SVMs using the Hinge Loss (H1) and the Ramp
Loss (Rs). Test error rates (Error) and number of SVs. All hyper-parameters
including s were chosen using a validation set.

Dataset Train Test Notes
Waveform1 4000 1000 Artificial data, 21 dims.
Banana1 4000 1300 Artificial data, 2 dims.
USPS+N2 7329 2000 0 vs rest + 10% label noise.
Adult2 32562 16282 As in (Platt, 1999).

1 http://mlg.anu.edu.au/~raetsch/data/index.html
2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases

SVM H1 SVM Rs

Dataset Error SV Error SV
Waveform 8.8% 983 8.8% 865
Banana 9.5% 1029 9.5% 891
USPS+N 0.5% 3317 0.5% 601
Adult 15.1% 11347 15.0% 4588

1.4.1 Accuracy and sparsity

We first study the accuracy and the sparsity of the solution obtained by the al-
gorithm. For that purpose, all the experiments in this section were performed
by initializing Algorithm 1.2 using β0 = 0 which corresponds to initializ-
ing CCCP with the classical SVM solution. Table 1.1 presents an experimen-
tal comparison of the Hinge Loss and the Ramp Loss using the RBF kernel
Φ(xl) · Φ(xm) = exp(−γ ‖xl − xm‖2). The results of Table 1.1 clearly show that
the Ramp Loss achieves similar generalization performance with much fewer SVs.
This increased sparsity observed in practice follows our mathematical expectations,
as exposed in the Ramp Loss section.

Figure 1.2 (left) shows how the s parameter of the Ramp Loss Rs controls the
sparsity of the solution. We report the evolution of the number of SVs as a function
of the number of training examples. Whereas the number of SVs in classical SVMs
increases linearly, the number of SVs in Ramp Loss SVMs strongly depends on s. If
s→ −∞ then Rs → H1; in other words, if s takes large negative values, the Ramp
Loss will not help to remove outliers from the SVM expansion, and the increase in
SVs will be linear with respect to the number of training examples, as for classical
SVMs. As reported on the left graph, for s = −1 on Adult the increase is already
almost linear. As s → 0, the Ramp Loss will prevent misclassified examples from
becoming SVs. For s = 0 the number of SVs appears to increase like the square
root of the number of examples, both for Adult and USPS+N.

Figure 1.2 (right) shows the impact of the s parameter on the generalization
performance. Note that selecting 0 < s < 1 is possible, which allows the Ramp
Loss to remove well classified examples from the set of SVs. Doing so degrades the
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Figure 1.2 Number of SVs vs. training size (left) and training error (right)
for USPS+N (top) and Adult (bottom). We compare the Hinge Loss H1 and
Ramp Losses R−1 and R0 (left) and Rs for different values of s, printed along
the curve (right).

generalization performance on both datasets.
Clearly s should be considered as a hyperparameter and selected for speed and

accuracy considerations.

1.4.2 Speedup

The experiments we have detailed so far are not faster to train than a normal
SVM because the first iteration (β0 = 0) corresponds to initializing CCCP with
the classical SVM solution. Interestingly, few additional iterations are necessary
(Figure 1.3), and they run much faster because of the smaller number of SVs. The
resulting training time was less than twice the SVM training time.

We thus propose to initialize the CCCP procedure with a subset of the training
set (let’s say 1/P th), as described in Section 1.3.5. The first convex optimization
is then going to be at least P 2 times faster than when initializing with β0 = 0
(SVMs training time being known to scale at least quadratically with the number
of examples). We then train the remaining iterations with all the data, however,
compared to standard SVMs fewer of these examples become SVs. Since the
subsequent iterations involve a smaller number of SVs, we expect accelerated
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Figure 1.3 The objective function with respect to the number of iterations
in the outer-loop of the CCCP for USPS+N (left) and Adult (right).
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Figure 1.4 Results on USPS+N (left) and Adult (right) using an SVM
with the Ramp Loss Rs. We show the test error and the number of SVs as
a function of the percentage r of training examples used to initialize CCCP,
and compare to standard SVMs trained with the Hinge Loss. For each r, all
hyper-parameters were chosen using cross-validation.

training times.
Figure 1.4 shows the robustness of the CCCP procedure when initialized with a

subset of the training set. On USPS+N and Adult, using respectively only 1/3th and
1/10th of the training examples is sufficient to match the generalization performance
of classical SVMs.

Using this scheme, and tuning the CCCP procedure for speed and similar
accuracy to SVMs, we obtain more than a two-fold and four-fold speedup over
SVMs on USPS+N and Adult respectively, together with a large increase in sparsity
(see Figure 1.5).
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Figure 1.5 Results on USPS+N and Adult comparing Hinge Loss and
Ramp Loss SVMs. The hyper-parameters for the Ramp Loss SVMs were
chosen such that their test error would be at least as good as the Hinge Loss
SVM ones.

1.5 Non-Convex Transductive SVMs

The same non-convex optimization techniques can be used to perform large scale
semi-supervised learning. Transductive SVMs (Vapnik, 1995) seek large margins
for both the labeled and unlabeled examples, in the hope that the true decision
boundary lies in a region of low density, implementing the so-called cluster assump-
tion (see Chapelle and Zien, 2005). When there are relatively few labeled examples
and relatively abundant unlabeled examples, TSVMs can leverage unlabeled exam-
ples and give considerably better generalization performance than standard SVMs.
Unfortunately, the TSVM implementations are rarely able to handle a large number
of unlabeled examples.

Early TSVM implementations perform a combinatorial search of the best la-
bels for the unlabeled examples. Bennett and Demiriz (1998) use an integer pro-
gramming method, intractable for large problems. The SVMlight -TSVM (Joachims,
1999b) prunes the search tree using a non-convex objective function. This is prac-
tical for a few thousand unlabeled examples.

More recent proposals (De Bie and Cristianini, 2004; Xu et al., 2005) transform
the transductive problem into a larger convex semi-definite programming problem.
The complexity of these algorithms grows like (L + U)4 or worse, where L and U

are numbers of labeled and unlabeled examples. This is only practical for a few
hundred examples.

We advocate instead the direct optimization of the non-convex objective function.
This direct approach has been used before. The sequential optimization procedure
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of Fung and Mangasarian (2001) is the most similar to our proposal. This method
potentially could scale well, although they only use 1000 examples in their largest
experiment. However, it is restricted to the linear case, does not implement a
balancing constraint (see below), and uses a special kind of SVM with a 1-norm
regularizer to maintain linearity. The primal approach of Chapelle and Zien (2005)
shows improved generalization performance, but still scales as (L+U)3 and requires
storing the entire (L+ U)× (L+ U) kernel matrix in memory.

1.5.1 Notation

We consider a set of L training pairs L = {(x1, y1), . . . , (xL, yL)}, x ∈ Rn,
y ∈ {1,−1} and an (unlabeled) set of U test vectors U = {xL+1, . . . , xL+U}.

1.5.2 TSVM Formulation

The original TSVM optimization problem is the following (Vapnik, 1995; Joachims,
1999b; Bennett and Demiriz, 1998). Given a training set L and a test set U, find
among the possible binary vectors

{Y = (yL+1, . . . , yL+U )}

the one such that an SVM trained on L ∪ (U× Y) yields the largest margin.
This is a combinatorial problem, but one can approximate it (see Vapnik, 1995)

as finding an SVM separating the training set under constraints which force the
unlabeled examples to be as far as possible from the margin. This can be written
as minimizing

1
2
‖w‖2 + C

L∑
i=1

ξi + C∗
L+U∑

i=L+1

ξi

subject to

yi fθ(xi) ≥ 1− ξi, i = 1, . . . , L

|fθ(xi)| ≥ 1− ξi, i = L+ 1, . . . , L+ U

This minimization problem is equivalent to minimizing

J(θ) =
1
2
‖w‖2 + C

L∑
i=1

H1(yi fθ(xi)) + C∗
L+U∑

i=L+1

H1(|fθ(xi)|), (1.10)

where the function H1(·) = max(0, 1 − ·) is the classical Hinge Loss (Figure 1.1,
center). The loss function H1(| · |) for the unlabeled examples can be seen in
Figure 1.6, left. For C∗ = 0 in (1.10) we obtain the standard SVM optimization
problem. For C∗ > 0 we penalize unlabeled data that is inside the margin. This
is equivalent to using the hinge loss on the unlabeled data as well, but where we
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Figure 1.6 Three loss functions for unlabeled examples, from left to right
(i) the Symmetric Hinge H1(|t|) = max(0, 1 − |t|) , (ii) Symmetric Sigmoid
S(t) = exp(−3t2) ; and (iii) Symmetric Ramp loss, Rs(|t|) = min(1 +
s, max(0, 1 − |t|)). The last loss function has a plateau of width 2|s| where
s ∈ (−1, 0] is a tunable parameter, in this case s = −0.3.

assume the label for the unlabeled example is yi = sign(fθ(xi)).

1.5.3 Losses for transduction

TSVMs implementing formulation (1.10) were first introduced in SVMlight (Joachims,
1999b). As shown above, it assigns a Hinge Loss H1(·) on the labeled examples (Fig-
ure 1.1, center) and a “Symmetric Hinge Loss” H1(| · |) on the unlabeled examples
(Figure 1.6, left). More recently, Chapelle and Zien (2005) proposed to handle
unlabeled examples with a smooth version of this loss (Figure 1.6, center). While
we also use the Hinge Loss for labeled examples, we use for unlabeled examples a
slightly more general form of the Symmetric Hinge Loss, that we allow to be “non-
peaky” (Figure 1.6, right). Given an unlabeled example x and using the notation
z = fθ(x), this loss can be written as4

z 7→ Rs(z) +Rs(−z) + const. (1.11)

where −1 < s ≤ 0 is a hyper-parameter to be chosen and Rs = min(1−s,max(0, 1−
t)) is the “Ramp Loss” we already introduced in Section 1.3.3, Figure 1.1. The s
parameter controls where we clip the Ramp Loss, and as a consequence it also
controls the wideness of the flat part of the loss (1.11) we use for transduction:
when s = 0, this reverts to the Symmetric Hinge H1(| · |). When s 6= 0, we obtain a
non-peaked loss function (Figure 1.6, right) which can be viewed as a simplification
of Chapelle’s loss function. We call this loss function (1.11) the “Symmetric Ramp
Loss”.

Training a TSVM using the loss function (1.11) is equivalent to training an SVM
using the Hinge loss H1(·) for labeled examples, and using the Ramp loss Rs(·)
for unlabeled examples, where each unlabeled example appears as two examples

4. The constant does not affect the optimization problem we will later describe.



14 Trading Convexity for Scalability

labeled with both possible classes. More formally, after introducing

yi = 1 i ∈ [L+ 1 . . . L+ U ]

yi = −1 i ∈ [L+ U + 1 . . . L+ 2U ]

xi = xi−U i ∈ [L+ U + 1 . . . L+ 2U ] ,

we can rewrite (1.10) as

Js(θ) =
1
2
‖w‖2 + C

L∑
i=1

H1(yi fθ(xi)) + C∗
L+2U∑
i=L+1

Rs(yi fθ(xi)) . (1.12)

This is the minimization problem we now consider in the rest of the chapter.

1.5.4 Balancing constraint

One problem with TSVM as stated above is that in high dimensions with few
training examples, it is possible to classify all the unlabeled examples as belonging
to only one of the classes with a very large margin, which leads to poor performance.
To cure this problem, one further constrains the solution by introducing a balancing
constraint that ensures the unlabeled data are assigned to both classes. Joachims
(1999b) directly enforces that the fraction of positive and negatives assigned to the
unlabeled data should be the same fraction as found in the labeled data. Chapelle
and Zien (2005) use a similar but slightly relaxed constraint, which we also use in
this work:

1
U

L+U∑
i=L+1

fθ(xi) =
1
L

L∑
i=1

yi . (1.13)

1.5.5 CCCP for TSVMs

As for non-convex SVMs in Section 1.3 the decomposition (1.7) of the Ramp Loss
makes the TSVM minimization problem as stated in (1.12) amenable to CCCP
optimization. The cost Js(θ) can indeed be decomposed into a convex Js

vex(θ) and
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concave Js
cav(θ) part as follows:

Js(θ) =
1
2
‖w‖2 + C

L∑
i=1

H1(yi fθ(xi)) + C∗
L+2U∑
i=L+1

Rs(yi fθ(xi))

=
1
2
‖w‖2 + C

L∑
i=1

H1(yi fθ(xi)) + C∗
L+2U∑
i=L+1

H1(yi fθ(xi))︸ ︷︷ ︸
Js

vex(θ)

−C∗
L+2U∑
i=L+1

Hs(yi fθ(xi))︸ ︷︷ ︸
Js

cav(θ)

.

(1.14)

This decomposition allows us to apply the CCCP procedure as stated in Algo-
rithm 1.1. The convex optimization problem (1.1) that constitutes the core of the
CCCP algorithm is easily reformulated into dual variables α using the standard
SVM technique.

After some algebra, we show in (Collobert et al., 2006) that enforcing the
balancing constraint (1.13) can be achieved by introducing an extra Lagrangian
variable α0 and an example x0 implicitely defined by

Φ(x0) =
1
U

L+U∑
i=L+1

Φ(xi) ,

with label y0 = 1. Thus, if we note K the kernel matrix such that

Kij = Φ(xi) · Φ(xj) ,

the column corresponding to the example x0 is computed as follows:

Ki0 = K0i =
1
U

L+U∑
j=L+1

Φ(xj) · Φ(xi) ∀i . (1.15)

The computation of this special column can be achieved very efficiently by comput-
ing it only once, or by approximating the sum (1.15) using an appropriate sampling
method.

Given the decomposition of the cost (1.14) and the trick of the special extra exam-
ple (1.15) to enforce the balancing constraint, we can easily apply Algorithm 1.1
to TSVMs. To simplify the first order approximation of the concave part in the
CCCP procedure (1.1), we denote as in Section 1.3.4

βi = yi
∂Js

cav(θ)
∂fθ(xi)

=

{
C∗ if yi fθ(xi) < s

0 otherwise
, (1.16)

for unlabeled examples (that is i ≥ L+ 1). The concave part Js
cav does not depend

on labeled examples (i ≤ L) so we obviously have βi = 0 for all i ≤ L. This
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yields Algorithm 1.3, after some standard derivations detailed in (Collobert et al.,
2006). This algorithm is very similar to Algorithm 1.2 which we obtained in the
case of non-convex SVMs.

Algorithm 1.3 : CCCP for TSVMs

Initialize θ0 = (w0, b0) with a standard SVM solution on the labeled points.

Compute β0
i =

(
C∗ if yi fθ0(xi) < s and i ≥ L + 1

0 otherwise

Set ζi = yi for 1 ≤ i ≤ L + 2U and ζ0 = 1
L

PL
i=1 yi

repeat
• Solve the following convex problem ( with Kij = Φ(xi) · Φ(xj) ) and get αt+1

max
α

�
α · ζ − 1

2
αT K α

�
subject to

8><
>:

α · 1 = 0

0 ≤ yi αi ≤ C ∀1 ≤ i ≤ L

−βi ≤ yi αi ≤ C∗ − βi ∀i ≥ L + 1

• Compute bt+1 using fθt+1(xi) =

L+2UX
j=0

αt+1
j Kij + bt+1 and

∀i ≤ L : 0 < yi αi < C =⇒ yi fθt+1(xi) = 1

∀i > L : −βt
i < yi αi < C∗ − βt

i =⇒ yi fθt+1(xi) = 1

• Compute βt+1
i =

(
C∗ if yi fθt+1(xi) < s and i ≥ L + 1

0 otherwise

until βt+1 = βt

1.5.6 Complexity

The main point we want to emphasize is the advantage in terms of training
time of our method compared to existing approaches. Training a CCCP-TSVM
amounts to solving a series of SVM optimization problems with L+ 2U variables.
As we highlighted in Section 1.3.5 SVM training has a worst case complexity of
O((L + 2U)3) but typically scales quadratically, and we find this is the case for
our TSVM subproblems as well. Assuming a constant number of iteration steps,
the whole optimization of TSVMs with CCCP should scale quadratically in most
practical cases (see Figure 1.7, Figure 1.9 and Figure 1.10). From our experience,
around five iteration steps are usually sufficient to reach the minimum, as shown
in Section 1.6 of this chapter, Figure 1.8.
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1.5.7 Previous Work

1.5.7.1 SVMLight-TSVM

Like our work, the heuristic optimization algorithm implemented in SVMlight

(Joachims, 1999b) solves successive SVM optimization problems, but on L + U

instead of L + 2U data points. It improves the objective function by iteratively
switching the labels of two unlabeled points xi and xj with ξi + ξj > 2. It uses
two nested loops to optimize a TSVM which solves a quadratic program in each
step. The convergence proof of the inner loop relies on the fact that there is only
a finite number 2U of labelings of U unlabeled points, even though it is unlikely
that all of them are examined. However, since the heuristic only swaps the labels of
two unlabeled examples at each step in order to enforce the balancing constraint,
it might need many iterations to reach a minimum, which makes it intractable for
big dataset sizes in practice (cf. Figure 1.7).

SVMlight uses annealing heuristics for the selection of C∗. It begins with a small
value of C∗ (C∗ = 1e − 5), and multiplies C∗ by 1.5 on each iteration until it
reaches C. The numbers 1e − 5 and 1.5 are hard coded into the implementation.
On each iteration the tolerance on the gradients is also changed so as to give more
approximate (but faster) solutions on earlier iterations. Again, several heuristics
parameters are hard coded into the implementation.

1.5.7.2 ∇TSVM

The ∇TSVM of Chapelle and Zien (2005) is optimized by performing gradient
descent in the primal space: minimize

1
2
‖w‖2 + C

L∑
i=1

H2(yi fθ(xi)) + C∗
L+U∑

i=L+1

H∗(yi fθ(xi)),

where H2(t) = max(0, 1− t)2 and H∗(t) = exp(−3t2) (cf. Figure 1.6, center). This
optimization problem can be considered a smoothed version of (1.10). ∇TSVM also
has similar heuristics for C∗ as SVMlight -TSVM. It begins with a small value of C∗

(C∗ = bC), and iteratively increases C∗ over l iterations until it finally reaches C.
The values b = 0.01 and l = 10 are default parameters in the code available at:
http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds.

Since the gradient descent is carried out in the primal, to learn nonlinear functions
it is necessary to perform kernel PCA (Schölkopf et al., 1997). The overall algorithm
has a time complexity equal to the square of the number of variables times the
complexity of evaluating the cost function. In this case, evaluating the objective
scales linearly in the number of examples, so the overall worst case complexity
of solving the optimization problem for ∇TSVM is O((U + L)3). The KPCA
calculation alone also has a time complexity of O((U + L)3). This method also
requires one to store the entire kernel matrix in memory, which clearly becomes
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infeasible for large datasets.

1.5.7.3 CS3VM

The work of Fung and Mangasarian (2001) is algorithmically the closest TSVM
approach to our proposal. Following the formulation of transductive SVMs found
in (Bennett and Demiriz, 1998), the authors consider transductive linear SVMs
with a 1-norm regularizer, which allow them to decompose the corresponding loss
function as a sum of a linear function and a concave function. Bennett proposed
the following formulation which is similar to (1.10): minimize

||w||1 + C
L∑

i=1

ξi + C∗
U∑

i=L+1

min(ξi, ξ∗i )

subject to

yi fθ(xi) ≥ 1− ξi, i = 1, . . . , L

fθ(xi) ≥ 1− ξi, i = L+ 1, . . . , L+ U

−(w · xi + b) ≥ 1− ξ∗i , i = L+ 1, . . . , L+ U

ξi ≥ 0, ξ∗i ≥ 0.

The last term of the objective function is nonlinear and corresponds to the loss
function given in Figure 1.6, left. To deal with this, the authors suggest to iteratively
approximate the concave part as a linear function, leading to a series of linear
programming problems. This can be viewed as a simplified subcase of CCCP (a
linear function being convex) applied to a special kind of SVM. Note also that the
algorithm presented in their paper did not implement a balancing constraint for
the labeling of the unlabeled examples as in (1.13). Our transduction algorithm is
nonlinear and the use of kernels, solving the optimization in the dual, allows for
large scale training with high dimensionality and number of examples.

1.6 Experiments with TSVMs

1.6.1 Small scale experiments

This section presents small scale experiments appropriate for comparing our al-
gorithm with existing TSVM approaches. In order to provide a direct comparison
with published results, these experiments use the same setup as (Chapelle and Zien,
2005). All methods use the standard RBF kernel, Φ(x) ·Φ(x′) = exp(−γ||x−x′||2).
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data set classes dims points labeled

g50c 2 50 500 50

Coil20 20 1024 1440 40

Text 2 7511 1946 50

Uspst 10 256 2007 50

Table 1.2 Small-Scale Datasets. We used the same datasets and experimen-
tal setup in these experiments as found in (Chapelle and Zien, 2005).

(number of

Coil20 g50c Text Uspst hyperparameters)

SVM 24.64 8.32 18.86 23.18 2

SVMlight -TSVM 26.26 6.87 7.44 26.46 2

∇TSVM 17.56 5.80 5.71 17.61 2

CCCP-TSVM |s=0
UC∗=LC 16.69 5.62 7.97 16.57 2

CCCP-TSVM |UC∗=LC 16.06 5.04 5.59 16.47 3

CCCP-TSVM 15.92 3.92 4.92 16.45 4

Table 1.3 Results on Small-Scale Datasets. We report the best test er-
ror over the hyperparameters of the algorithms, as in the methodology of
Chapelle and Zien (2005). SVMlight -TSVM is the implementation in SVMlight .
∇TSVM is the primal gradient descent method of Chapelle and Zien (2005).
CCCP-TSVM |s=0

UC∗=LC reports the results of our method using the heuris-
tic UC∗ = LC with the Symmetric Hinge Loss, that is with s = 0. We
also report CCCP-TSVM |UC∗=LC where we allow the optimization of s, and
CCCP-TSVM where we allow the optimization of both C∗ and s.

Table 1.2 lists the datasets we have used. The g50c dataset is an artificial dataset
where the labels correspond to two Gaussians in a 50-dimensional space. The means
of those Gaussians are placed in such a way that the Bayes error is 5%. The coil20
data is a set of gray-scale images of 20 different objects taken from different angles,
in steps of 5 degrees (Nene et al., 1996). The text dataset consists of the classes
mswindows and mac of the Newsgroup20 dataset preprocessed as in (Szummer and
Jaakkola, 2002). The uspst dataset is the test part of the USPS hand written digit
data. All datasets are split into ten parts with each part having a small amount of
labeled examples and using the remaining part as unlabeled data. 5B
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Figure 1.7 Training times for g50c (left) and text (right) for
SVMlight -TSVMs, ∇TSVMs and CCCP-TSVMs using the best parameters
for each algorithm as measured on the test set in a single trial. For the Text
dataset, using 2000 unlabeled examples CCCP-TSVMs are 133x faster than
SVMlight -TSVMs, and 50x faster than ∇TSVMs.

1.6.1.1 Accuracies

Following Chapelle and Zien (2005), all hyperparameters are tuned on the test set
(they do this for all methods but one, LDS, for which they perform cross-validation).
We should be cautious when comparing our algorithm in this way, especially
when the algorithms have different sets of hyperparameters. For CCCP-TSVMs,
compared to the other algorithms, we have two additional parameters, C∗ and s.
Therefore we report the CCCP-TSVM error rates for three different scenarios:

CCCP-TSVM, where all four parameters are tuned on the test set.

CCCP-TSVM |UC∗=LC where we choose C∗ using a heuristic method. We use
heuristic UC∗ = LC because it decreases C∗ when the number of unlabeled data
increases. Otherwise, for large enough U no attention will be paid to minimizing
the training error.

CCCP-TSVM |s=0
UC∗=LC where we choose s = 0 and C∗ using heuristic UC∗ = LC.

This setup has the same free parameters (C and γ) as the competing TSVM
implementations, and therefore provides the most fair comparison.

The results are reported in Table 1.3. CCCP-TSVM in all three scenarios achieves
approximately the same error rates as ∇TSVM and appears to be superior to
SVMlight -TSVM.

1.6.1.2 Training Times

At this point we ask the reader to simply assume that all authors have chosen
their hyperparameter selection method as well as they could. We now compare the
computation times of these three algorithms.
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Figure 1.8 Value of the objective function and test error during the CCCP
iterations of training TSVM on two datasets (single trial), g50c (left) and text

(right). CCCP-TSVM tends to converge after only a few iterations.

The CCCP-TSVM algorithm was implemented in C++.5 The successive con-
vex optimizations are performed using a state-of-the-art SMO implementation.
Without further optimization, CCCP-TSVMs run orders of magnitude faster than
SVMlight -TSVMs and ∇TSVM.6 Figure 1.7 shows the training time on g50c and
text for the three methods as we vary the number of unlabeled examples. For
each method we report the training times for the hyperparameters that give op-
timal performance as measured on the test set on the first split of the data (we
use CCCP-TSVM |s=0

UC∗=LC in these experiments). Using all 2000 unlabeled data on
Text, CCCP-TSVMs are approximately 133 times faster than SVMlight -TSVM and
50 times faster than ∇TSVM.

We expect these differences to increase as the number of unlabeled examples
increases further. In particular, ∇TSVM requires the storage of the entire kernel
matrix in memory, and is therefore clearly infeasible for some of the large scale
experiments we attempt in Section 1.6.2.

Finally, Figure 1.8 shows the value of the objective function and test error
during the CCCP iterations of training TSVM on two datasets. The CCCP-TSVM
objective function converges after five to ten iterations.

1.6.2 Large Scale Experiments

In this section, we provide experimental results on large scale experiments. Since
other methods are intractable on such data sets, we only compare CCCP-TSVM
against SVMs.

5. Source code available at http://www.kyb.tuebingen.mpg.de/bs/people/fabee/

transduction.html.
6. ∇TSVM was implemented by adapting the MatLab LDS code of Chapelle and Zien
(2005) available at http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds.
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Method Train Unlabeled Parameters Test

size size Error

SVM 100 0 C = 252.97, σ = 15.81 16.61%

TSVM 100 500 C = 2.597, C∗ = 10, s = −0.2, σ = 3.95 11.99%

TSVM 100 1000 C = 2.597, C∗ = 10, s = −0.2, σ = 3.95 11.67%

TSVM 100 2000 C = 2.597, C∗ = 10, s = −0.2, σ = 3.95 11.47%

TSVM 100 5000 C = 2.597, C∗ = 2.5297, s = −0.2, σ = 3.95 10.65%

TSVM 100 10000 C = 2.597, C∗ = 2.5297, s = −0.4, σ = 3.95 10.64%

SVM 1000 0 C = 25.297, σ = 7.91 11.04%

TSVM 1000 500 C = 2.597, C∗ = 10, s = −0.4, σ = 3.95 11.09%

TSVM 1000 1000 C = 2.597, C∗ = 2.5297, s = −0.4, σ = 3.95 11.06%

TSVM 1000 2000 C = 2.597, C∗ = 10, s − 0.4 =, σ = 3.95 10.77%

TSVM 1000 5000 C = 2.597, C∗ = 2.5297, s = −0.2, σ = 3.95 10.81%

TSVM 1000 10000 C = 2.597, C∗ = 25.2970, s = −0.4, σ = 3.95 10.72%

Table 1.4 Comparing CCCP-TSVMs with SVMs on the RCV1 problem for
different number of labeled and unlabeled examples. See text for details.

1.6.2.1 RCV1 Experiments

The first large scale experiment that we conducted was to separate the two
largest top-level categories CCAT (corporate/industrial) and GCAT (gov-

ernment/social) of the training part of the Reuters dataset as prepared by Lewis
et al. (2004). The set of these two categories consists of 17754 documents. The fea-
tures are constructed using the bag of words technique, weighted with a TF.IDF
scheme and normalized to length one. We performed experiments using 100 and
1000 labeled examples. For model selection we use a validation set with 2000 and
4000 labeled examples for the two experiments. The remaining 12754 examples were
used as a test set.

We chose the parameter C and the kernel parameter γ (using an RBF kernel)
that gave the best performance on the validation set. This was done by training a
TSVM using the validation set as the unlabeled data. These values were then fixed
for every experiment.

We then varied the number of unlabeled examples U , and reported the test
error for each choice of U . In each case we performed model selection to find the
parameters C∗ and s. A selection of the results can be seen in Table 1.4. The best
result we obtained for 1000 training points was 10.58% test error, when using 10500
unlabeled points, and for 100 training points was 10.42% when using 9500 unlabeled
points. Compared to the best performance of an SVM of 11.04% for the former and
16.61% for the latter, this shows that unlabeled data can improve the results on
this problem. This is especially true in the case of few training examples, where
the improvement in test error is around 5.5%. However, when enough training data
is available to the algorithm, the improvement is only in the order of one percent.
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Method Training Unlabeled Parameters Test

size size Error

SVM 100 0 C = 10, γ = 0.0128 23.44%

TSVM 100 2000 C∗ = 1, s = −0.1 16.81%

SVM 1000 0 C = 10, γ = 0.0128 7.77%

TSVM 1000 2000 C∗ = 5, s = −0.1 7.13%

TSVM 1000 5000 C∗ = 1, s = −0.1 6.28%

TSVM 1000 10000 C∗ = 0.5, s = −0.1 5.65%

TSVM 1000 20000 C∗ = 0.3, s = −0.1 5.43%

TSVM 1000 40000 C∗ = 0.2, s = −0.1 5.31%

TSVM 1000 60000 C∗ = 0.1, s = −0.1 5.38%

Table 1.5 Comparing CCCP-TSVMs with SVMs on the MNIST problem
for different number of labeled and unlabeled examples. See text for details.

Figure 1.9 shows the training time of CCCP optimization as a function of the
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Figure 1.9 Optimization time for the Reuters dataset as a function of the
number of unlabeled data. The algorithm was trained on 1,000 points (left)
and on 100 points (right). The dashed lines represent a parabola fitted at the
time measurements.

number of unlabeled examples. On a 64 bit Opteron processor the optimization
time for 12500 unlabeled examples was approximately 18 minutes using the 1000
training examples and 69 minutes using 100 training examples. Although the worst
case complexity of SVMs is cubic and the optimization time seems to be dependent
on the ratio of the number of labeled to unlabeled examples, the training times
show a quadratic trend.
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Figure 1.10 Optimization time for the MNIST dataset as a function of
the number of unlabeled data. The algorithm was trained on 1,000 labeled
examples and up to 60,000 unlabeled examples. The dashed lines represent
a polynomial of degree two with a least square fit on the algorithm’s time
measurements.

1.6.2.2 MNIST Experiments

In the second large scale experiment, we conducted experiments on the MNIST
handwritten digit database, as a 10-class problem. The original data has 60,000
training examples and 10,000 testing examples. We subsampled the training set for
labeled points, and used the test set for unlabeled examples (or the test set plus
remainder of the training set when using more than 10,000 unlabeled examples).
We performed experiments using 100 and 1000 labeled examples. We performed
model selection for 1-vs-the-rest SVMs by trying a grid of values for σ and C,
and selecting the best ones by using a separate validation set of size 1000. For
TSVMs, for efficiency reasons we fixed the values of σ and C to be the same
ones as chosen for SVMs. We then performed model selection using 2000 unlabeled
examples to find the best choices of C∗ and s using the validation set. When using
more unlabeled data, we only reperformed model selection on C∗ as it appeared
that this parameter was the most sensitive to changes in the unlabeled set, and kept
the other parameters fixed. For the larger labeled set we took 2000, 5000, 10000,
20000, 40000 and 60000 unlabeled examples. We always measure the error rate on
the complete test set. The test error rate and parameter choices for each experiment
are given in the Table 1.5, and the training times are given in Figure 1.10.

The results show an improvement over SVM for CCCP-TSVMs which increases
steadily as the number of unlabeled examples increases. Most experiments in semi-
supervised learning only use a few labeled examples and do not use as many
unlabeled examples as described here. It is thus reassuring to know that these
methods do not apply just to toy examples with around 50 training points, and
that gains are still possible with more realistic dataset sizes.
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1.7 Conclusion

We described two non-convex algorithms using CCCP that bring marked scala-
bility improvements over the corresponding convex approaches, namely for SVMs
and TSVMs. Moreover, any new improvements to standard SVM training could
immediately be applied to either of our CCCP algorithms.

In general, we argue that the current popularity of convex approaches should not
dissuade researchers from exploring alternative techniques, as they sometimes give
clear computational benefits.
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transductive SVMs. Journal of Machine Learning Research, 7:1687–1712, 2006.

Tijl De Bie and Nello Cristianini. Convex methods for transduction. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.
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